Dynamic Systems Theory

- Powerful But Low-Dimensional Descriptions of Systemic Unfolding In Time
- Control Parameters and Collective Variables
- Descriptive Geometry of State Spaces
- Coupled Variables to Track Circular Causal Influences Among Subsystems
- Topology of Attractors, Basins, Repellors, Bifurcations, Trajectories

Importance of Body-Environment Interaction, Continuous Reciprocal Causation, Biological Solutions to Tasks

Traditional Representational Computational Approach Inadequate to the Complexity of the Interactions

Understanding Embodied Cognition Requires The Resources of Dynamic Systems Theory